12 research outputs found

    Mobile Service Continuity for Edge Train Networks

    Get PDF
    This paper has been presented at : IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019). 8-11 September 2019 Istanbul, TurkeyIn press / En prensaIn moving train networks, two-hop architecture is adopted to improve users experience by reducing the interaction between on-board users and base stations on the train route. In addition, edge networking have emerged as a solution for bringing services to the proximity of the users. However, deploying two-hop and edge networks do not guarantee a continuous service delivery for train users. When a large number of users transit from the train to the land, they experience service interruption due to control signalling storm and backhaul latency. In this paper, we propose a holistic edge service management system to provide mobile service continuity. The contribution of this paper is twofold. First, we develop an enhanced handover scheme that reduces control signals by handling user mobility at the edge. Second, we develop a pre-copy migration scheme that eliminates backhaul latency by relocating containerized applications to the user proximity across edge train networks. Our experimental results show that the two proposed solution can reduce the control signals and migration downtime by 50% and 36%, respectively.This work has been partially funded by the H2020 col-laborative Europe/Taiwan research project 5G-CORAL (grant no. 761586). This research is also partially supported by the Ministry of Science and Technology, under the Grant Number MOST 108-2634-F-009-006 - through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan

    Experimental framework and evaluation of the 5G-Crosshaul Control Infrastructure

    Get PDF
    The goal of 5G-Crosshaul is to integrate fronthaul and backhaul operation under the same data and controlplanes. This paper focuses on the latter, by experimentally showing theflexibility of the 5G-Crosshaul ControlInfrastructure (XCI). In this sense, various network setups featuring heterogeneous network and computingresources and high-speed mobility were deployed over the 5G-Crosshaul testbed. More specifically, three dif-ferent use cases that exploit the capabilities embedded in the XCI have been experimentally evaluated. First,"hierarchical network orchestration" demonstrates how service setup times in complex multi-technology trans-port networks can be decreased from current manual configuration times in the order of days down to automatedsetups in the order of seconds by means of a resource management application that consumes the XCI services.Second, "energy management of IT and network resources" presents an energy management application thatexploits the XCI to deploy network configurations that achieve energy savings ranging from 15% to 40% bydynamically reacting to datacenter and network conditions. Finally, the XCI was also exploited by an energy management application in a high-speed train mobility scenario featuring a radio over fiber network in which savings close to 80% were achieved

    An Integrated, Virtualized Joint Edge and Fog Computing System with Multi-RAT Convergence

    Get PDF
    Notably, developing an innovative architectural network paradigm is essential to address the technical challenging of 5G applications' requirements in a unified platform. Forthcoming applications will provide a wide range ofnetworking, computing and storage capabilities closer to the endusers.In this context, the 5G-PPP Phase two project named "5GCORAL:A 5G Convergent Virtualized Radio Access Network Living at the Edge" aims at identifying and experimentally validating which are the key technology innovations allowing for the development of a convergent 5G multi-RAT access based on a virtualized Edge and Fog architecture being scalable, flexible and interoperable with other domains including transport, core network and distant Clouds. In 5G-CORAL, an architecture is proposed based on ETSI MEC and ETSI NFV frameworks in a unified platform. Then, a set of exemplary use cases benefiting from Edge and Fog networks in near proximity of the end-user are proposed for demonstration on top of connected car, shopping mall and high-speed train platforms.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    DEEP : A Vertical-Oriented Intelligent and Automated Platform for the Edge and Fog

    Get PDF
    The fifth generation (5G) of mobile communications introduces improvements on many fronts when compared to its previous generations. Besides the performance enhancements and new advances in radio technologies, it also integrates other technological domains, such as cloud-to-things continuum and artificial intelligence. In this work, the 5G-DIVE Elastic Edge Platform (DEEP) is proposed as the linking piece for the integration of these technological domains, making available an intelligent edge and fog 5G end-to-end solution. This solution brings numerous benefits to vertical industries by enabling streamlined, abstracted, and automated management of their vertical services, thus contributing to the introduction of novel services, cost savings, and improved time to market. Preliminary validation of the proposed platform is performed through a proof of concept, along with a qualitative analysis of its benefits for Industry 4.0 and autonomous drone scouting vertical industries

    Energy Monitoring and Management in 5G Integrated Fronthaul and Backhaul

    No full text
    Energy efficiency is likely to be the litmus test for the sustainability of upcoming 5G networks. Before the new generation of cellular networks are ready to roll out, their architecture designers are motivated to leverage the SDN technology for the sake of its offered flexibility, scalability, and programmability to achieve the 5G KPI of 10 times lower energy consumption. In this paper, we present Proofs-of-Concept of Energy Management and Monitoring Applications (EMMAs) in the context of three challenging, realistic case studies, along with a SDN/NFV-based MANO architecture to manage converged fronthaul/backhaul 5G transport networks

    Empowering industry 4.0 and autonomous drone scouting use cases through 5G-DIVE solution

    No full text
    The 5G Edge Intelligence for Vertical Experimentation (5G-DIVE) project aims at demonstrating the technical merits and business value proposition of 5G technologies in two vertical pilots, namely the Industry 4.0 (I4.0) and Autonomous Drones Scout (ADS) pilots. This paper presents an overview of the overall 5G-DIVE solution and reports the results of the initial validation campaign of the selected use case, featuring 5G connectivity, distributed Edge computing, and artificial intelligence. The initial results for the I4.0 provide a baseline for next step validation campaign targeting a broader scale 5G implementation, while the ADS results provides promising results for enhancing the autonomous navigation in real-time
    corecore